Reductive operators that commute with a compact operator.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypercyclic Operators That Commute with the Bergman Backward Shift

The backward shift B on the Bergman space of the unit disc is known to be hypercyclic (meaning: it has a dense orbit). Here we ask: “Which operators that commute with B inherit its hypercyclicity?” We show that the problem reduces to the study of operators of the form φ(B) where φ is a holomorphic self-map of the unit disc that multiplies the Dirichlet space into itself, and that the question o...

متن کامل

Dilated Floor Functions That Commute

We determine all pairs of real numbers (α, β) such that the dilated floor functions bαxc and bβxc commute under composition, i.e., such that bαbβxcc = bβbαxcc holds for all real x.

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

Compact Sets and Compact Operators

Proof. Properties 2 and 3 are left to the reader. For property 1, assume that S is an unbounded compact set. Since S is unbounded, we may select a sequence {vn}n=1 such that ‖vn‖ → 0 as n→∞. Since S is compact, this sequence will have a convergent subsequence, say {vk}k=1, which will still be unbounded. This sequence is Cauchy, so there is a positive integer K for which ‖v`− vm‖ ≤ 1/2 for all `...

متن کامل

Compact Operators

In these notes we provide an introduction to compact linear operators on Banach and Hilbert spaces. These operators behave very much like familiar finite dimensional matrices, without necessarily having finite rank. For more thorough treatments, see [RS, Y]. Definition 1 Let X and Y be Banach spaces. A linear operator C : X → Y is said to be compact if for each bounded sequence {xi}i∈IN ⊂ X , t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 1976

ISSN: 0026-2285

DOI: 10.1307/mmj/1029001522